This study was conducted to develop novel ceramic bone substitute that resembles the autologous bone behavior when used as graft material. Solid-state reaction at 1100°C was performed to synthesize β-tricalcium phosphate (β-TCP) and biphasic calcium phosphate (BCP). The ceramics were further analyzed to characterize phase composition, microstructural properties, cytocompatability and then challenged to regenerate critical bone defects in the parietal bone of rabbits. X-ray diffraction analysis confirmed the production of β-TCP and indicated the synthesis of novel BCP composed of β-TCP and silicocarnotite (calcium phosphate silicate mineral). The cytocompatibility test with human osteoblast cell line revealed enhanced cell proliferation on the BCP ceramic. The novel BCP induced the filling of about 73% of the bone defect with a newly formed bone tissue and an almost complete degradation after 12 weeks of healing. This novel ceramic resembles the autologous bone properties of complete degradation and efficient enhancement of bone formation, making it promising as bone graft material.