By one-pot wet chemical method, Pt-based hollow nanostructures were synthesized at room temperature. Because of the highly damping optical response of the metal, these Pt-based hollow nanostructures exhibited weak thermal effects with a laser focal spot on 4-aminothiophenol (PATP) molecules limiting dimerisation. The isolated surface enhanced Raman scattering (SERS) spectra of PATP, in which the vibrational bands from 4,4 -dimercaptoazobenzene (DMAB) molecules are not observed, were able to be seen, and this was in good agreement with the Raman spectra of PATP powder. In addition, the concentration of PATP molecules was varied, and the illumination time was increased to 2000 s, respectively. It was found that spectra were stable with varied PATP concentrations, and the plasmon-driven chemical conversion of PATP to DMAB was still suppressed, even when the laser illumination time was increased to 2000 s.