Whey protein solutions at pH 3.5 elicited an astringent taste sensation. The astringency of whey protein isolate (WPI), the process whey protein (PWP) that was prepared by heating WPI at pH 7.0, and the process whey protein prepared at pH 3.5 (aPWP) were adjusted to pH 3.5 and evaluated by 2 sensory analyses (the threshold method and the scalar scoring method) and an instrumental analysis (taste sensor method). The taste-stimulating effects of bovine and porcine gelatin were also evaluated. The threshold value of astringency of WPI, PWP, and aPWP was 1.5, 1.0, and 0.7 mg/mL, respectively, whereas the gelatins did not give definite astringency. It was confirmed by the scalar scoring method that the astringency of these proteins increased with the increase in protein concentration, and these proteins elicited strong astringency at 10 mg/mL under acidic conditions. On the other hand, the astringency was not elicited at pH 3.5 by 2 types of gelatin. A taste sensor gave specific values for whey proteins at pH 3.5, which corresponded well to those obtained by the sensory analysis. Elicitation of astringency induced by whey protein under acidic conditions would be caused by aggregation and precipitation of protein molecules in the mouth.