To detect the posttranslational N-myristoylation of caspase substrates, the susceptibility of the newly exposed N-terminus of known caspase substrates to protein N-myristoylation was evaluated by in vivo metabolic labeling with [ 3 H]myristic acid in transfected cells using a fusion protein in which the query sequence was fused to a model protein. As a result, it was found that the N-terminal nine residues of the newly exposed N-terminus of the caspase-cleavage product of cytoskeletal actin e⁄ciently direct the protein N-myristoylation. Metabolic labeling of COS-1 cells transiently transfected with cDNA coding for full-length truncated actin (tActin) revealed the e⁄cient incorporation of [ 3 H]myristic acid into this molecule. When COS-1 cells transiently transfected with cDNA coding for full-length actin were treated with staurosporine, an apoptosis-inducing agent, an N-myristoylated tActin was generated. Immuno£uorescence staining coupled with MitoTracker or £uorescence tagged-phalloidin staining revealed that exogenously expressed tActin colocalized with mitochondria without a¡ecting cellular and actin morphology. Taken together, these results demonstrate that the C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage during apoptosis and targeted to mitochondria.
To examine the amino-terminal sequence requirements for cotranslational protein N-myristoylation, a series of site-directed mutagenesis of N-terminal region were performed using tumor necrosis factor as a nonmyristoylated model protein. Subsequently, the susceptibility of these mutants to protein N-myristoylation was evaluated by metabolic labeling in an in vitro translation system or in transfected cells. It was found that the amino acid residue at position 3 in an N-myristoylation consensus motif, Met-Gly-X-X-X-Ser-X-X-X, strongly affected the susceptibility of the protein to two different cotranslational protein modifications, N-myristoylation and N-acetylation; 10 amino acids (Ala, Ser, Cys, Thr, Val, Asn, Leu, Ile, Gln, and His) with a radius of gyration smaller than 1.80 Å directed N-myristoylation, two negatively charged residues (Asp and Glu) directed N-acetylation, and two amino acids (Gly and Met) directed heterogeneous modification with both N-myristoylation and N-acetylation. The amino acid requirements at this position for the two modifications were dramatically changed when Ser at position 6 in the consensus motif was replaced with Ala. Thus, the amino acid residue penultimate to the N-terminal Gly residue strongly affected two cotranslational protein modifications, N-myristoylation and N-acetylation, and the amino acid requirements at this position for these two modifications were significantly affected by downstream residues.
In order to determine the amino-terminal sequence requirements for protein N-myristoylation, site-directed mutagenesis of the N-terminal region was performed using tumor necrosis factor (TNF) mutants as model substrate proteins. Subsequently, the susceptibility of these mutants to protein N-myristoylation was evaluated by metabolic labeling in an in vitro translation system using rabbit reticulocyte lysate. A TNF mutant having the sequence MGAAAAA AAA at its N-terminus was used as the starting sequence to identify elements critical for protein N-myristoylation. Sequential vertical-scanning mutagenesis of amino acids at a distinct position in this model N-terminal sequence revealed the major sequence requirements for protein N-myristoylation: the combination of amino acids at position 3 and 6 constitutes a major determinant for the susceptibility to protein N-myristoylation. When Ser was located at position 6, 11 amino acids (Gly, Ala, Ser, Cys, Thr, Val, Asn, Leu, Ile, Gln, His) were permitted at position 3 to direct efficient protein N-myristoylation. In this case, the presence of Lys at position 7 was found to affect the amino acid requirement at position 3 and Lys became permitted at this position. When Ser was not located at position 6, only 3 amino acids (Ala, Asn, Gln) were permitted at position 3 to direct efficient protein N-myristoylation. The amino acid requirements found in this study were fully consistent with the N-terminal sequence of 78 N-myristoylated proteins in which N-myristoylation was experimentally verified. These observations strongly indicate that the combination of amino acids at position 3, 6 and 7 is a major determinant for protein Nmyristoylation.
The effects of Maillard reaction on gel properties of dried egg white (DEW) with galactomannan (GM) were investigated. Maillard-reacted DEW (MDEW) was prepared by dry-heating a mixture with a weight ratio of 1:4 of GM to DEW at 60 degrees C and 65% relative humidity. The modification of amino groups and polymerization of DEW proteins dry-heated with GM proceeded with increasing the dry-heating time. The covalent attachment of GM to DEW was confirmed from SDS-PAGE analysis. Gel strength and water-holding capacity of MDEW gels were higher than those of DEW dry-heated without GM (control DEW) and reached maximum after 3 days of dry-heating. The appearance of MDEW gels became transparent with increasing the dry-heating time, but control DEW gels were still turbid. MDEW dry-heated for 3 days was almost soluble even after heating of its solution at 90 degrees C, whereas control DEW proteins precipitated. The modification of DEW with GM through the Maillard reaction was an effective method to make a firm and transparent gel from DEW at broader range of pH and NaCl concentration of the medium.
Bisphenol AF (BPAF), a homolog of bisphenol A (BPA), is a widely used environmental chemical that has adverse effects on reproduction. The aim of this study was to analyse the effects of BPA and BPAF exposure on oocyte maturation in vitro. Oocytes were cultured in the presence of BPA or BPAF (2, 20, 50 or 100 μg/ml) for 18 h. At concentrations of 50 and 100 μg/ml, BPA and BPAF inhibited oocyte maturation, with BPAF treatment causing a sharp decrease in the number of oocytes reaching maturity. Oocytes were exposed to BPA or BPAF at 2 μg/ml and cultured for different durations (6, 9, 12, 15 or 18 h). Both BPAF and BPA caused a cell cycle delay under these conditions. Oocytes cultured in the presence of BPA or BPAF (50 μg/ml) for 21 h were tested for the localization of α-tubulin and MAD2 using immunofluorescence. High concentrations of BPAF induced cell cycle arrest through the activation of the spindle assembly checkpoint. After 12 h of culture in BPAF (50 μg/ml), oocytes were transferred to control medium for 9 h. Only 63.3% oocytes treated in this manner progressed to metaphase II (MII). Oocytes exposed to high doses of BPA experienced a cell cycle delay, but managed to progress to MII when the culture period was prolonged. In addition, MAD2 was localized in the cytoplasm of these oocytes. In conclusion, both BPAF and BPA exposure affected oocyte maturation, however BPAF and BPA have differential effects on SAC activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.