In this article, a design scheme of automatic carrier landing system control law based on combination of the objective risk and the subjective risk is proposed, in order to improve the safety and flying quality of the landing. The nonlinear longitudinal mathematical model is constructed in the air wake turbulence condition during carrier landing, which is transformed into a linear perturbed model by the state-space equations with deviation state variables. The concepts of the objective risk and the subjective risk in the recovery of an aircraft aboard a carrier are addressed. A principle of predicting the future states based on the current ones is put forward so that a mathematic model for the objective risk is established, synthetically considering the current and future landing state deviations. For the other risk, the corresponding model is obtained by the subjective experiences of the pilots in the flight simulation tests. Furthermore, a novel model predictive control algorithm, which contains the additional subjective risk and the time-varying weights of the state terms, is proposed. Automatic carrier landing control law is built by introducing the objective risk, the subjective risk, and the effect of carrier air wake disturbance. In the rolling optimization progress, these time-varying weights are dynamically tuned according to the constantly changing objective risk to control the state deviations and suppress this risk, while the subjective risk is handled by the additional risk terms. Besides, the action of carrier air wake disturbance is considered and compensated in the derivation of the linear matrix inequalities. Test results based on a semi-physical simulation platform indicate that the new automatic carrier landing system control algorithm proposed by this article brings about an excellent carrier landing performance as well as an improved flying quality.