The sustainability of grazing lands lies in the nexus of human consumption behavior, livestock productivity, and environmental sustainability. Due to fast growing global food demands, many grazing lands have suffered from overgrazing, leading to soil degradation, air and water pollution, and biodiversity losses. Multidisciplinary efforts are required to understand how grazing lands can be better monitored, assessed and managed to attain predictable outcomes of optimal benefit to society. This paper synthesizes our understanding based on previous work done on impacts of grazing on ecosystem goods and services, identifies current knowledge gaps, and formulates a plan forward. We review the impacts of two contrasting grazing systems, continuous and multi-paddock rotational grazing, on soil carbon (C), nutrient cycling and greenhouse gas emissions (GHGs). We then extend our review to explore challenges of incorporating spatial heterogeneity and temporal variability into monitoring and modelling C and nutrient cycling in grazing lands. We revisit two process-based models (i.e., DNDC and DayCent) and two watershed models (i.e., SWAT and VIC) widely used to simulate C, nutrient and water cycles of these lands. Finally we identify research directions for improving the knowledge base which is essential to conserve grazing lands and maintain their ecosystem goods and services.