Multifunctionality is seen as one of the key benefits delivered by sustainable urban drainage systems (SUDS). It has been promoted by both scientific research and practical guidelines. However, interrelations between different benefits are vaguely defined, thus highlighting a lack of knowledge on ways they could be promoted in the actual design process. In this research, multifunctionality has been studied with the help of scenario analysis. Three stormwater scenarios involving different range of SUDS elements have been designed for the case area of Kirstinpuisto in the city of Turku, Finland. Thereafter, the alternative design scenarios have been assessed with four criteria related to multifunctionality (water quantity, water quality, amenity, and biodiversity). The results showed that multifunctionality could be analyzed in the design phase itself, and thus provided knowingly. However, assessing amenity and biodiversity values is more complex and in addition, we still lack proper methods. As the four criteria have mutual interconnections, multifunctionality should be considered during the landscape architectural design, or else we could likely lose some benefits related to multifunctionality. This reinforces emerging understanding that an interdisciplinary approach is needed to combine ecological comprehension together with the system thinking into SUDS design, locating them not as individual elements or as a part of the treatment train, but in connection with wider social ecological framework of urban landscape.
The water resources of the Koshi Basin (87,311 km 2) are largely untapped, and while proposals for their development exist, their impacts on current and future water demand are not quantified. The current study is the first to evaluate the impacts of 11 proposed development projects for hydropower generation and water storage. We find that 29,733 GWh of hydropower could be generated annually and 8382 million m 3 of water could be stored. This could satisfy unmet demand in the current (660 million m 3) basin situation and in future scenariosi.e. population, agricultural and industrial growththat are projected to have 920, 970 and 1003 million m 3 of unmet demand, respectively, by 2050.
Though springs are the primary source of water for communities in the mid-hills of Nepal, an in-depth scientific understanding of spring systems is missing, preventing the design of effective climate-resilient interventions for long-term sustainability of springs. This study marks the first attempt to combine environmental isotopes analysis with hydrometric and hydrogeological measurements to identify dominant recharge zones for springs in two mountainous catchments-Banlek and Shikarpur-in Far-Western Nepal. In total, 422 water samples collected from rainfall, springs and streams between March 2016 and March 2017 were analyzed for their isotopic composition (δ 18 O and δD). Isotopic composition of rainwater shows seasonality, suggesting that different sources of water vapor cause rains in monsoon and in dry season. Rainfall responses of individual springs were used to identify connections to unconfined and deeper groundwater strata. The isotopic composition of springs in the two catchments ranges from −9.55 to −8.06‰ for δ 18 O and −67.58 to −53.51‰ for δD. The isotopic signature of the spring sources falls close to the local meteoric water line for the corresponding season, indicating strong rainfall contribution to springs. Altitudinal isotopic gradients suggest mean recharge elevation of 2,600-2,700 m asl for springs in Shikarpur, which lies beyond the surface-water catchment, and a recharge elevation of 1,000-1,100 m asl for Banlek, which partially extends beyond the surface-water catchment. The demarcated recharge zones will be used by government agencies to implement recharge interventions to increase the resiliency and reliability of springs in Far-Western Nepal.
Urbanization modifies the natural water cycle particularly by reducing the water storage capacity. We analysed the storage capacity of three stormwater management designs in south-western Finland to demonstrate how an urban catchment releases stormwater and how storage contributes to flood resilience. The analysis relies on EPA SWMM5.1 simulations of water balance for a seven-month period including two extreme rain events during the summer and autumn. The enhanced storage capacity provided by the designs increased resilience against flooding and released stormwater with slower rates leading to reduced peak flows. Even the design with the least storage (10% LID coverage) was efficient at regulating floods due to controlled flow in a vegetated swale, whereas the design with the highest storage capacity (60% LID coverage) demonstrated the possibility of restoring nearly natural water cycle in urban catchments. The study suggests storage capacity can act as a flood resilience indicator directly linked with the physical catchment characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.