Abstract:Regionalization approaches to daily streamflow prediction are investigated for 13 catchments in the Coweeta Hydrologic Laboratory using a conceptual rainfall-runoff model of low complexity (six parameters). Model parameters are considered to represent the dynamic response characteristics (DRCs) of a catchment. It is demonstrated that all catchments within the region cannot be assumed to have a similar hydrological behaviour, and thence a regionalization approach considering differences in physical catchment descriptors (PCDs) is required. Such a regionalization approach can be regarded as a top-down method, in the sense that factors controlling parameter variability are identified first within the entire region under study, and then such information is exploited to predict runoff in a smaller sub-region. Regionalization results reveal that consideration of interrelations between dependent variables, which here are the parameters of the rainfall-runoff model, can improve performance of regression as a regionalization method. Breaking the parameter correlation structure inherent in the model, and exploiting merely relationships between model parameters and PCDs (no matter how weakly related they are), can result in a significant decrease in regionalization performance. Also, high significance of regression between values of PCDs and DRCs does not guarantee a set of parameters with a good predictive power. When there is a reason to believe that, in the sense of hydrological behaviour, a gauged catchment resembles the ungauged catchment, then it may be worthwhile to adopt the entire set of calibrated parameters from the gauged catchment instead of deriving quantitative relationships between catchment descriptors and model parameters.
A two dimensional model, FEMMA, to describe water and nitrogen (N) fluxes within and from a forested first-order catchment (Kangasvaara in Eastern Finland) was constructed by linking the most significant processes affecting the fluxes of water, ammonium, nitrate and dissolved organic nitrogen along a hillslope from the water divide to the stream. The hillslope represents the average flowpath of water in the catchment and the model was used to estimate the N fluxes for a catchment in eastern Finland before and after clear-cutting. The simulated results were in reasonable agreement with the nitrate, dissolved organic N and dissolved total N measurements from the study catchment and with other results in the literature. According to the simulations, the major sinks of N after clear-cutting were immobilisation by soil microbes, uptake by ground vegetation and sorption to soil. These sinks increased downslope from the clear-cut area, indicating the importance of an uncut buffer zone between the stream and the clear-cut area in reducing N exports. The buffer zone retained 76% of the N flux coming from the clear-cut area. Nitrification was a key process in controlling the N export after clear-cutting and N increases were mainly as nitrate. Most of the annual N export took place during the spring flood, when uptake of N by plants was minimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.