Rainfall runoff models are frequently used for design processes for urban infrastructure. The most sensitive input for these models is precipitation data. Therefore, it is crucial to account for temporal and spatial variability of rainfall events as accurately as possible to avoid misleading simulation results. This paper aims to show the significant errors that can occur by using rainfall measurement resolutions in urban environments that are too coarse. We analyzed the spatial variability of rainfall events from two years with the validated data of 22 rain gauges spread out over an urban catchment of 125 km2. By looking at the interstation correlation of the rain gauges for different classes of rainfall intensities, we found that rainfall events with low and intermediate intensities show a good interstation correlation. However, the correlation drops significantly for heavy rainfall events suggesting higher spatial variability for more intense rainstorms. Further, we analyzed the possible deviation from the spatial rainfall interpolation that uses all available rain gauges when reducing the number of rain gauges to interpolate the spatial rainfall for 24 chosen events. With these analyses we found that reducing the available information by half results in deviations of up to 25% for events with return periods shorter than one year and 45% for events with longer return periods. Assuming uniformly distributed rainfall over the entire catchment resulted in deviations of up to 75% and 125%, respectively. These findings are supported by the work of past research projects and underline the necessity of a high spatial measurement density in order to account for spatial variability of intense rainstorms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.