Waterflood implementation accounts for more than half of the oil production worldwide. Despite the observations and extensive research from a large number of floods and thousands of simulation studies, managing waterfloods and Enhanced Oil Recovery (EOR) floods is still a technical challenge. A major contributor to this challenge are waterflood induced fractures (WIF). Managing waterfloods is a multivariable problem although WIF are one aspect, it is by no means the only controlling factor.The best evidence that WIF are one of the main factors controlling flow in reservoirs is the insensitivity of injection pressure to injection rates. With our experience, in hundreds of waterfloods, we have frequently observed this phenomenon in the field data. If fluid flow depended on diffusive Darcy flow alone, we would expect higher injection rates with higher injection pressures. However, it is common to observed relatively constant injection pressures over a wide range of water injection rates. Rapid well communication and changes in water cuts that vary with injection rates also support an interpretation of high permeability induced fractures between injector and producer. In some reservoirs, interwell tracer data can be used to determine the influence of induced fracture features. The interwell tracers usually show very fast water movement.Induced fractures in waterfloods and EOR projects can be caused by a number of mechanisms such as but not limited to, pressure depletion, changing pressure regimes, thermal effects, or plugging effects. These fractures can either be beneficial to the reservoir performance or effect performance negatively. Benefits include improved injectivity and increased throughput of the displacing fluid. Negative effects can come in the form of reduced volumetric sweep efficiency, impaired ultimate recovery or injected fluid losses out of zone.Case studies, theory, and available literature from Western Canada will be reviewed in order to suggest and improve reservoir management strategies for waterfloods. We have completed hundreds of waterflood feasibility, waterflood management and EOR flood studies worldwide and continue to be amazed and humbled by the complexity that many waterfloods and EOR floods exhibit due to induced fracturing. WIF and EOR induced fractures (EIF) are common and should be analysed to optimize production. Growth of the WIF, response to waterflood with the presence of WIF, implication of WIF and reservoir management are the main areas which will be addressed.