Magnesium ions have an important role in the structure and folding mechanism of ribonucleic systems. To properly simulate these biophysical processes, the applied molecular models should reproduce, among others, the kinetic properties of the ions in water solution. Here, we have studied the kinetics of the binding of magnesium ions with water molecules and nucleic acids systems using molecular dynamics simulation in detail. We have validated the parameters used in biomolecular force fields, such as AMBER and CHARMM, for Mg2+ ions, and also for the biological relevant ions, Na+, K+ and Ca2+ together with three different water models (TIP3P, SPC/E and TIP5P). The results show that Mg2+ ions have a slower exchange rate than Na+, K+ and Ca2+ in agreement with experimental trend, but the simulated value underestimates the experimentally observed Mg2+-water exchange rate with several orders of magnitudes, irrespective of force field and water model. A new set of parameters for Mg2+ was developed to reproduce the experimental kinetic data. This set also leads to better reproduction of structural data than existing models. We have applied the new parameters set to Mg2+ binding with a mono-phosphate model system and with the purine riboswitch, add A-riboswitch. In line with the Mg2+-water results, the newly developed parameters show a better description of the structure and kinetic of the Mg2+-phosphate 2 binding than all other models. The characterization of the ion binding to the riboswitch system shows that the new parameter set does not affect the global structure of the ribonucleic acid system or the number of ions involved in direct or indirect binding. A slight decrease in the number of water-bridged contacts between A-riboswitch and Mg2+ ion is observed. The results support the ability of the newly developed parameters to improve the kinetic description of the Mg2+ and phosphate ions and their applicability in nucleic acid simulation.