Unmanned aircrafts (UA) usually fly below 500 ft to be segregated from manned aircraft. However, while general aviation (GA) usually do fly above 500 ft in areas where UA are allowed to operate, GA will at times also fly below 500 ft. Consequently, there is a distinct risk of near‐miss encounters as well as actual midair collisions (MACs). This work presents a model for determining this risk based on physical parameters of the aircraft and actual figures for the numbers of GA in a given airspace, as well as the probability of having GA below 500 ft. The aim is to achieve a prediction with a precision better than one order of magnitude relative to the true MAC rate value. The model is applied to Danish airspace and the MAC rate for unmitigated operations of UA is found to be approximately 10−6 MAC per flight hour. The model is particularly well suited for beyond visual line‐of‐sight operations, and is useful for UA operators for conducting risk assessment of planned operations as well as for regulators for determining appropriate operational requirements.