Le traitement des effluents urbains par réacteurs discontinus séquentiels (SBR : Sequencing Batch Reactor) constitue une solution alternative aux traitements par systèmes à boue activée en effectuant le traitement du carbone, la séparation liquide solide et l'élimination des nutriments au sein d'un bassin unique grâce à une gestion adéquate des cycles temporels de réaction. L'alternance de phases aérées et anoxiques suivie d'une période de décantation conduit en théorie à l'élimination quasi totale des ions nitrate formés lors de la phase de nitrification aérobie. Cependant, selon la charge appliquée, le carbone totalement dégradé lors de la phase préliminaire d'aération ne peut servir de source de carbone pour la dénitrification exogène.Afin d'accélérer la dénitrification, plusieurs solutions sont possibles : l'une consiste à allonger la deuxième phase d'anoxie suffisamment longtemps pour traiter les ions nitrate résiduels au cours d'un processus de dénitrification endogène, l'autre à diminuer le temps de réaction aérobie tout en augmentant la fréquence des séquences aérobie/anoxie afin de conserver du carbone résiduel lors de la dénitrification. Une troisième solution réside dans l'ajout d'une source de carbone exogène suite à l'étape de nitrification de manière à permettre une assimilation plus rapide et plus efficace des ions nitrate formés (dénitrification exogène).L'article compare les résultats d'abattement sur le carbone et l'azote d'une eau usée urbaine en utilisant les trois types de fonctionnement. Il en résulte la définition d'une stratégie globale de contrôle du procédé, chacun des scénarii pouvant être privilégié en fonction de la qualité de l'effluent de départ et des contraintes de traitement.Wastewater treatment by a Sequencing Batch Reactor (SBR) provides an alternative solution to activated sludge treatment, by carrying out carbon treatment, liquid-solid separation and nutrient removal in a single tank, thanks to the appropriate management of the temporal reaction cycles. Alternating the aeration and anoxic phases, followed by a decantation period, leads, in theory, to the almost total removal of nitrate ions formed during the aerobic nitrification phase. However, depending on the applied load, the carbon that is totally degraded during the preliminary aeration phase, cannot be used as a source of carbon for exogenic denitrification.Several solutions are possible in order to accelerate denitrification: one consists of lengthening sufficiently the second anoxic phase to treat the residual nitrate ions during the endogenous denitrification process; another strategy involves reducing the aerobic reaction time, while increasing the frequency of aerobic/anoxic sequences in order to preserve residual carbon during denitrification. A third solution lies in the addition of a source of exogenic carbon after the nitrification stage, to allow a quicker and more efficient assimilation of the nitrate ions that are formed (exogenic denitrification). This article compares the results of reducing carbon and ni...