A model assuming coherent quadrupole-octupole vibrations and rotations is applied to describe non-yrast energy sequences with alternating parity in several eveneven nuclei from different regions, namely 152,154 Sm, 154,156,158 Gd, 236 U and 100 Mo. Within the model scheme the yrast alternating-parity band is composed by the members of the ground-state band and the lowest negative-parity levels with odd angular momenta. The non-yrast alternating-parity sequences unite levels of β-bands with higher negative-parity levels. The model description reproduces the structure of the considered alternating-parity spectra together with the observed B(E1), B(E2) and B(E3) transition probabilities within and between the different level-sequences. B(E1) and B(E3) reduced probabilities for transitions connecting states with opposite parity in the non-yrast alternating-parity bands are predicted. The implemented study outlines the limits of the considered band-coupling scheme and provides estimations about the collective energy potential which governs the quadrupole-octupole properties of the considered nuclei.