Condensed/aqueous phase surface reactions such as electrocatalytic hydrogenation of bio-oil often involve reactant adsorption and displacement of adsorbed solvent molecules. The enthalpy and entropy of these adsorption processes will influence the kinetics of surface reactions in the condensed/aqueous phase. The value of the adsorption entropy will have a significant effect on how the reactant coverages vary as a function of temperature. Here, adsorption isotherms from 10 to 40 °C and van't Hoff plots were constructed to directly extract the adsorption entropy and enthalpy of phenol, a bio-oil model compound, on Pt and Rh in aqueous media. We show that the effective adsorption entropy of phenol on Pt and Rh in aqueous phase is positive, in contrast to the negative entropy expected in gas phase. The positive entropy values in the aqueous phase are consistent with adsorbed water gaining a fraction of the entropy of bulk liquid water upon displacement by adsorbed phenol. Consequently, the phenol surface coverage is less dependent on temperature in the aqueous phase compared to the gas phase. The results here give insight to the way in which temperature impacts reaction rates for aqueous-phase phenol hydrogenation reaction.