Abstract. This paper provides a survey of recent progress and software for solving mixed integer nonlinear programs (MINLP) wherein the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in very years. By exploiting analogies to the case of well-known techniques for solving mixed integer linear programs and incorporating these techniques into the software, significant improvements have been made in our ability to solve the problems.Key words. Mixed Integer Nonlinear Programming; Branch and Bound; AMS(MOS) subject classifications.1. Introduction. Mixed-Integer Nonlinear Programs (MINLP) are optimization problems where some of the variables are constrained to take integer values and the objective function and feasible region of the problem are described by nonlinear functions. Such optimization problems arise in many real world applications. Integer variables are often required to model logical relationships, fixed charges, piecewise linear functions, disjunctive constraints and the non-divisibility of resources. Nonlinear functions are required to accurately reflect physical properties, covariance, and economies of scale.In all its generality, MINLP forms a particularly broad class of challenging optimization problems as it combines the difficulty of optimizing over integer variables with handling of nonlinear functions. Even if we restrict our model to contain only linear functions, MINLP reduces to a Mixed-Integer Linear Program (MILP), which is an NP-Hard problem [56]. On the other hand, if we restrict our model to have no integer variable but allow for general nonlinear functions in the objective or the constraints, then MINLP reduces to a Nonlinear Program (NLP) which is also known to be NP-Hard [91]. Combining both integrality and nonlinearity can lead to examples of MINLP that are undecidable [68].