Microalgae have been utilized in wastewater treatment strategies in various contexts. Uncontrolled algal species are a cheap and effective remediation strategy. This study investigates the thermochemical potential of wastewater treatment algae (phycoremediation) as a means to produce renewable fuel streams and bio-products. Three gasification temperature levels were investigated in an auger gasification platform: 760, 860, and 960 °C. Temperature increases resulted in corresponding increases in CO and H2 concentrations in the producer gas from 12.8% and 4.7% at 760 °C to 16.9% and 11.4% at 960 °C, respectively. Condensable yields ranged between 15.0% and 16.6%, whereas char yields fell between 46.0% and 51.0%. The high ash content (40% on a dry basis) was the main cause of the elevated char yields. On the other hand, the relatively high yields of condensables and a high carbon concentration in the char were attributed to the low conversion efficiency in this gasification platform. Combustion kinetics of the raw algae, in a thermogravimetric analyzer, showed three consecutive stages of weight loss: drying, devolatilization, and char oxidation. Increasing the algae gasification temperature led to increases in the temperature of peak char oxidation. Future studies will further investigate improvements to the performance of auger gasification.