“…What is now clear is that plumes connect the equatorial F region ionosphere to the dayside magnetopause and the nightside magnetotail plasma sheet (e.g., Su et al, 2001a, b;Horvath and Lovell, 2011;Walsh et al, 2014a, b;Foster et al, 2014). Through the formation and evolution of the different plumes, they impact wave generation and wave-particle interactions (e.g., Summers et al, 2008;Chen et al, 2012;Halford et al, 2015), particle precipitation (Spasojević and Fuselier, 2009;Yuan et al, 2011Yuan et al, , 2013, ion outflow (e.g., Zeng and Horowitz, 2008;Tu et al, 2007), local-time asymmetries in ULF wave field-line resonance (FLR) signatures (e.g., Archer et al, 2015;Ellington et al, 2016), satellite communication and navigation systems (Ledvina et al, 2004;Basu et al, 2005;Datta-Barua et al, 2014), and even the coupling efficiency of the solar wind to the magnetosphere (Borovsky and Denton, 2006;Borovsky et al, 2013;Ouellette et al, 2016;Fuselier et al, 2016). Though we now have a new appreciation and understanding of plumes, there are still many unanswered questions on their formation (e.g., Kelley et al, 2004;Horvath and Lovell, 2011;Zou et al, 2013Zou et al, , 2014Borovsky et al, 2014) and impact on global magnetospheric dynamics McFadden et al 2008;Walsh et al, 2014Walsh et al, , 2015.…”