A grouting pad is the key structure for the construction of water inrush grouting on the shaft working surface. Previous methods of calculating the bearing capacity have limitations due to a lack of understanding of the failure mode. To investigate the bearing capacity of a concrete grouting pad on the working surface of a shaft, this paper establishes a mechanical model for the punching shear failure of a grouting pad under symmetrical loading conditions. A unified solution for the bearing capacity is derived, and the influence of parameters is discussed. In addition, a new method for designing the plastic limit thickness is proposed based on this research. The results show that the reason for the grouting pads’ punching shear failure resulted from the formation of peripheral grouting holes “weak ring” caused by the reduction of the bearing capacity. When the thickness of B0 remains constant, the bearing capacity qu of the grouting pad is inversely proportional to the ratio of the diameter and the area of the bottom load. Therefore, following the method of “dividing, interval, and jumping holes” during grouting construction is recommended. The greater the thickness of the grouting pad, the greater the bearing capacity qu will be. When the grouting pad diameter is 2r2 and the thickness B0 is constant, the bearing capacity qu increases with the material tensile strength ft. When designing grouting pads, following the principles of “large thickness, uniform strength theory, high strength materials” will improve bearing performance. The findings have been implemented in the design of the grouting pad thickness for the Tianshan Shengli Tunnel shaft project, which can successfully solve the problem of frequent cracking caused by the weak bearing capacity of a grouting pad. The findings can provide a theoretical basis and reference for the design and construction of grouting pads in a highway tunnel shaft.