In this paper, we propose a new Benes-type wavelength division multiplexing (WDM) optical network with space-wavelength switching capability. Intuitively, adding wavelength switching capability to space Benes networks requires the use of additional hardware components (i.e., wavelength converters). However, in this paper, we show that a Benes network with full-permutation capability in both space and wavelength domains can be designed using a smaller number of hardware components but the same number of stages as that in a space-only Benes network. In addition, wavelength conversion in the proposed network occurs only between two pre-defined wavelengths, eliminating the need for any expensive wide-range wavelength converters. The proposed Benes network is based on the newly proposed concept of wavelength-exchangeable permutation networks. Wavelength-exchangeable networks implement single-step space and wavelength switching and hence reduces the number of hardware components. We show that, such wavelengthexchangeable networks possess some interesting properties that can be used for designing routing algorithms to improve signal quality.