This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using ParticleIn-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons.The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the γ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma densities and incorrect profiles provided by the drift-diffusion models. Therefore, the hybrid code version featuring the full ion fluid model should be favored against the more popular drfit-diffusion model, noting that the suggested numerical scheme for the former model implies only a small additional computational cost.