“…In the first approach, the constraining effect of the correlation between traits is assessed using artificial selection, by imposing selection regimes that would "push" the phenotype in multivariate space at right or near-right angles to g max , i.e., along the hypothetical line of greatest evolutionary resistance (reviewed in [21]). Owing in large part to the labor-intensive nature of selection experiments, such studies have been done almost exclusively on organisms that are short-lived, breed easily, and produce relatively large numbers of offspring, such as plants (e.g., Arabidopsis, [29], wild radishes, [21,30]) and insects (e.g., butterflies, [31][32][33][34], beetles [35], Drosophila, [36]). Although most studies show that evolution at right angles from g max is possible, despite strong genetic correlations, a few have shown the existence of seemingly unbreakable, developmentally based constraints on the short-term evolution of traits perpendicular to g max (e.g., color variation between eyespots in the wings of the butterfly Bicyclus anynana [34,37,38].…”