Correspondence matthias.betz@usb.ch (M.J.B.), irene.burger@usz.ch (I.A.B.), christian-wolfrum@ethz.ch (C.W.) In Brief Through genetic and pharmacological in vivo and in vitro approaches, Balaz et al. show that the mevalonate pathway is important for adipocyte browning. The importance of this pathway is supported by a retrospective clinical study and a small volunteer trial with fluvastatin. The authors identify geranylgeranyl pyrophosphate as the key mevalonate intermediate driving adipocyte browning.
SUMMARYRecent research focusing on brown adipose tissue (BAT) function emphasizes its importance in systemic metabolic homeostasis. We show here that genetic and pharmacological inhibition of the mevalonate pathway leads to reduced human and mouse brown adipocyte function in vitro and impaired adipose tissue browning in vivo. A retrospective analysis of a large patient cohort suggests an inverse correlation between statin use and active BAT in humans, while we show in a prospective clinical trial that fluvastatin reduces thermogenic gene expression in human BAT. We identify geranylgeranyl pyrophosphate as the key mevalonate pathway intermediate driving adipocyte browning in vitro and in vivo, whose effects are mediated by geranylgeranyltransferases (GGTases), enzymes catalyzing geranylgeranylation of small GTP-binding proteins, thereby regulating YAP1/TAZ signaling through F-actin modulation. Conversely, adipocyte-specific ablation of GGTase I leads to impaired adipocyte browning, reduced energy expenditure, and glucose intolerance under obesogenic conditions, highlighting the importance of this pathway in modu-lating brown adipocyte functionality and systemic metabolism.