Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundPrimary cardiac angiosarcoma (PCAS) is a rare and aggressive heart tumour with limited treatment options and a poor prognosis. Understanding cellular heterogeneity and tumour microenvironment (TME) is crucial for the development of effective therapies. Here, we investigated the intratumoural heterogeneity and TME diversity of PCAS using single‐cell RNA sequencing (scRNA‐seq).MethodsWe performed scRNA‐seq analysis on tumour samples from four patients with PCAS, supplemented with multicolour immunohistochemistry for identification. We used scRNA‐seq data from five normal cardiac tissue samples downloaded from public databases for comparative analyses. Bioinformatic analyses, including Cell Ranger, Seurat, Monocle2, hdWGCNA, SCENIC and NicheNet, were utilized to identify distinct cell populations, transcriptional patterns, and co‐regulating gene modules.ResultsOur analysis revealed significant intratumoural heterogeneity in PCAS driven by diverse biological processes such as protein synthesis, degradation, and RIG‐I signalling inhibition. The SCENIC analysis identified three primary transcription factors' clusters (CEBPB, MYC and TAL1). T‐cell subset analysis showed exhausted antigen‐specific T‐cells, complicating the efficacy of immune checkpoint blockade. Furthermore, we observed suppressive macrophages (SPP1+ and OLR1+) and reduced mitochondrial gene MT‐RNR2 (MTRNR2L12) expression in TME‐infiltrating cells, indicating impaired mitochondrial function.ConclusionThis study elucidates the complex cellular landscape and immune microenvironment of PCAS, highlighting potential molecular targets for the development of novel therapies. These findings underscore the importance of a multifaceted therapeutic approach for addressing the challenges posed by PCAS's heterogeneity and immune evasion.Key points Insights into the heterogeneity and transcriptional patterns of sarcoma cells may explain the challenges in treating primary cardiac angiosarcoma (PCAS) using the current therapeutic modalities. Characterization of the immune microenvironment revealed significant immunosuppression mediated by specific myeloid cell populations (SPP1+ and OLR1+ macrophages). Identification of mitochondrial dysfunction in immune cells within the PCAS microenvironment, particularly the notable downregulation of the MTRNR2L12 protein, suggests a new avenue for therapeutic targeting.
BackgroundPrimary cardiac angiosarcoma (PCAS) is a rare and aggressive heart tumour with limited treatment options and a poor prognosis. Understanding cellular heterogeneity and tumour microenvironment (TME) is crucial for the development of effective therapies. Here, we investigated the intratumoural heterogeneity and TME diversity of PCAS using single‐cell RNA sequencing (scRNA‐seq).MethodsWe performed scRNA‐seq analysis on tumour samples from four patients with PCAS, supplemented with multicolour immunohistochemistry for identification. We used scRNA‐seq data from five normal cardiac tissue samples downloaded from public databases for comparative analyses. Bioinformatic analyses, including Cell Ranger, Seurat, Monocle2, hdWGCNA, SCENIC and NicheNet, were utilized to identify distinct cell populations, transcriptional patterns, and co‐regulating gene modules.ResultsOur analysis revealed significant intratumoural heterogeneity in PCAS driven by diverse biological processes such as protein synthesis, degradation, and RIG‐I signalling inhibition. The SCENIC analysis identified three primary transcription factors' clusters (CEBPB, MYC and TAL1). T‐cell subset analysis showed exhausted antigen‐specific T‐cells, complicating the efficacy of immune checkpoint blockade. Furthermore, we observed suppressive macrophages (SPP1+ and OLR1+) and reduced mitochondrial gene MT‐RNR2 (MTRNR2L12) expression in TME‐infiltrating cells, indicating impaired mitochondrial function.ConclusionThis study elucidates the complex cellular landscape and immune microenvironment of PCAS, highlighting potential molecular targets for the development of novel therapies. These findings underscore the importance of a multifaceted therapeutic approach for addressing the challenges posed by PCAS's heterogeneity and immune evasion.Key points Insights into the heterogeneity and transcriptional patterns of sarcoma cells may explain the challenges in treating primary cardiac angiosarcoma (PCAS) using the current therapeutic modalities. Characterization of the immune microenvironment revealed significant immunosuppression mediated by specific myeloid cell populations (SPP1+ and OLR1+ macrophages). Identification of mitochondrial dysfunction in immune cells within the PCAS microenvironment, particularly the notable downregulation of the MTRNR2L12 protein, suggests a new avenue for therapeutic targeting.
No abstract
Background: Undifferentiated pleomorphic sarcoma (UPS) is a highly malignant mesenchymal tumor that ranks as one of the most common types of soft tissue sarcoma. Even though chemotherapy increases the 5-year survival rate in UPS, high tumor heterogeneity frequently leads to chemotherapy resistance and consequently to recurrences. In this study, we characterized the cell composition and the transcriptional profile of UPS with resistance to chemotherapy at the single cell resolution. Methods: A 58-year-old woman was diagnosed with a 13.6 × 9.3 × 6.0 cm multi-nodular tumor with heterogeneous cysto-solid structure at the level of the distal metadiaphysis of the left thigh during magnetic resonance tomography. Morphological and immunohistochemical analysis led to the diagnosis of high-grade (G3) UPS. Neoadjuvant chemotherapy, surgery (negative resection margins), and adjuvant chemotherapy were conducted, but tumor recurrence developed. The UPS sample was used to perform single-cell RNA sequencing by chromium-fixed RNA profiling. Results: Four subpopulations of tumor cells and seven subpopulations of tumor microenvironment (TME) have been identified in UPS. The expression of chemoresistance genes has been detected, including KLF4 (doxorubicin and ifosfamide), ULK1, LUM, GPNMB, and CAVIN1 (doxorubicin), and AHNAK2 (gemcitabine) in tumor cells and ETS1 (gemcitabine) in TME. Conclusions: This study provides the first description of the single-cell transcriptome of UPS with resistance to two lines of chemotherapy, showcasing the gene expression in subpopulations of tumor cells and TME, which may be potential markers for personalized cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.