Background: The advent of single-cell RNA sequencing (scRNAseq) and additional single-cell omics technologies have provided scientists with unprecedented tools to explore biology at cellular resolution. However, reaching an appropriate number of good quality reads per cell and reasonable numbers of cells within each of the populations of interest are key to infer conclusions from otherwise limited analyses. For these reasons, scRNAseq studies are constantly increasing the number of cells analysed and the granularity of the resultant transcriptomics analyses. Methods: We aimed to identify previously described fibroblast subpopulations in healthy adult human skin by using the largest dataset published to date (528,253 sequenced cells) and an unsupervised population-matching algorithm. Results: Our reanalysis of this landmark resource demonstrates that a substantial proportion of cell transcriptomic signatures may be biased by cellular stress and response to hypoxic conditions. Conclusions: We postulate that the ”more is better” approach, currently prevalent in the scientific community, might undermine the extent of the analysis, possibly due to long computational processing times inherent to large datasets.