Heme-copper oxidases (HCOs) are key
enzymes in prokaryotes and
eukaryotes for energy production during aerobic respiration. They
catalyze the reduction of the terminal electron acceptor, oxygen,
and utilize the Gibbs free energy to transport protons across a membrane
to generate a proton (ΔpH) and electrochemical gradient termed
proton motive force (PMF), which provides the driving force for the
adenosine triphosphate (ATP) synthesis. Excessive PMF is known to
limit the turnover of HCOs, but the molecular mechanism of this regulatory
feedback remains relatively unexplored. Here we present a single-enzyme
study that reveals that cytochrome bo3 from Escherichia coli, an HCO closely homologous
to Complex IV in human mitochondria, can enter a rare, long-lifetime
leak state during which proton flow is reversed. The probability of
entering the leak state is increased at higher ΔpH. By rapidly
dissipating the PMF, we propose that this leak state may enable cytochrome bo3, and possibly other HCOs, to maintain a suitable
ΔpH under extreme redox conditions.