<p style='text-indent:20px;'>In this paper, we focus on an online scheduling problem with position-based learning effect on a single machine, where the jobs are released online over time and preemption is not allowed. The information about each job <inline-formula><tex-math id="M1">\begin{document}$ J_j $\end{document}</tex-math></inline-formula>, including the basic processing time <inline-formula><tex-math id="M2">\begin{document}$ p_j $\end{document}</tex-math></inline-formula> and the release time <inline-formula><tex-math id="M3">\begin{document}$ r_j $\end{document}</tex-math></inline-formula>, is only available when it arrives. The actual processing time <inline-formula><tex-math id="M4">\begin{document}$ p_j' $\end{document}</tex-math></inline-formula> of each job <inline-formula><tex-math id="M5">\begin{document}$ J_j $\end{document}</tex-math></inline-formula> is defined as a function related to its position <inline-formula><tex-math id="M6">\begin{document}$ r $\end{document}</tex-math></inline-formula>, i.e., <inline-formula><tex-math id="M7">\begin{document}$ p_j' = p_j(\alpha-r\beta) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M8">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> are both nonnegative learning index. Our goal is to minimize the sum of completion time of all jobs. For this problem, we design a deterministic polynomial time online algorithm <i>Delayed Shortest Basic Processing Time</i> (DSBPT). In order to facilitate the understanding of the online algorithm, we present a relatively common and simple example to describe the execution process of the algorithm, and then by competitive analysis, we show that online algorithm DSBPT is a best possible online algorithm with a competitive ratio of 2.</p>