Silver nanoparticles (17.78 ± 12.12 nm) were synthesized by the reduction of 0.5 M silver nitrate using formaldehyde as reducing and triethylamine as promoting and stabilizing agent. The particles were grain like agglomerates with spherical, centered-face cubic and crystalline in nature. The sample was highly pure with amine (NH) as associated and capping molecules. Further, the genotoxicity and oxidative stress of these particles were evaluated using Labeo rohita (L. rohita) as genetic model exposed (10-55 mg L -1 dose) through aquatic medium for 28 days. The cells were produced with micronuclei, fragmented, lobed and buds nuclei in dose dependent manner. The highest incidence of comet was recoded (27.34 ± 5.68) at 55 mg L -1 Ag-NPs and 14 days treatment. Then frequency was decreased to 22.65 ± 6.66% after 28 days due to complex repair mechanism. Moreover, the treatment also produces the oxidative stress and disturbs the level of GST in gill and liver tissue. There was a sharp decline in the activities of GST and this decrease of activity increase the MDA content. Further, the elevated level of GSH represents that the liver has started defensive mechanism against oxyraidcals. This study concluded, Ag-NPs are genotoxic in nature and produce micronuclei, comet cells and also induces oxidative stress in aquatic organisms.