In this research, we combined two distinct, structured light methods, the single-shot pseudo-random sequence-based approach and the time-multiplexing stripe indexing method. As a result, the measurement resolution of the single-shot, spatially encoded, pseudo-random sequence-based method improved significantly. Since the time-multiplexed stripe-indexed-based techniques have a higher measurement resolution, we used varying stripes to enhance the measurement resolution of the pseudo-random sequence-based approaches. We suggested a multi-resolution 3D measurement system that consisted of horizontal and vertical stripes with pixel sizes ranging from 8 × 8 to 16 × 16. We used robust pseudo-random sequences (M-arrays) to controllably distribute various stripes in a pattern. Since single-shape primitive characters only contribute one feature point to the projection pattern, we used multiple stripes instead of single-shape primitive symbols. However, numerous stripes will contribute multiple feature points. The single character-based design transforms into an increased featured size pattern when several stripes are employed. Hence, the projection pattern contains a much higher number of feature points. So, we obtained a high-resolution measurement. Each stripe in the captured image is located using adaptive grid adjustment and stripe indexing techniques. The triangulation principle is used to measure 3D.