ML (machine learning) is consisted of a method of recognizing face. This technique is useful for the attendance system. Two sets are generated for testing and training phases in order to segment the image, to extract the features and develop a dataset. An image is considered as a testing set; the training set is contrasted when it is essential to identify an image. An ensemble classifier is implemented to classify the test images as recognized or non-recognized. The ensemble algorithm fails to acquire higher accuracy as it classifies the data in two classes. Thus, GLCM (Grey Level Co-occurrence Matrix) is projected for analyzing the texture features in order to detect the face. The attendance of the query image is marked after detecting the face. The simulation outcomes revealed the superiority of the projected technique over the traditional methods concerning accuracy. Keywords: DWT, GLCM, KNN, Decision Tree