Purpose
Scattered parts are laid randomly during the manufacturing process and have difficulty to recognize and manipulate. This study aims to complete the grasp of the scattered parts by a manipulator with a camera and learning method.
Design/methodology/approach
In this paper, a cascaded convolutional neural network (CNN) method for robotic grasping based on monocular vision and small data set of scattered parts is proposed. This method can be divided into three steps: object detection, monocular depth estimation and keypoint estimation. In the first stage, an object detection network is improved to effectively locate the candidate parts. Then, it contains a neural network structure and corresponding training method to learn and reason high-resolution input images to obtain depth estimation. The keypoint estimation in the third step is expressed as a cumulative form of multi-scale prediction from a network to use an red green blue depth (RGBD) map that is acquired from the object detection and depth map estimation. Finally, a grasping strategy is studied to achieve successful and continuous grasping. In the experiments, different workpieces are used to validate the proposed method. The best grasping success rate is more than 80%.
Findings
By using the CNN-based method to extract the key points of the scattered parts and calculating the possibility of grasp, the successful rate is increased.
Practical implications
This method and robotic systems can be used in picking and placing of most industrial automatic manufacturing or assembly processes.
Originality/value
Unlike standard parts, scattered parts are randomly laid and have difficulty recognizing and grasping for the robot. This study uses a cascaded CNN network to extract the keypoints of the scattered parts, which are also labeled with the possibility of successful grasping. Experiments are conducted to demonstrate the grasping of those scattered parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.