We present a single-shot incoherent light imaging method for simultaneously observing both amplitude and phase without any imaging optics, based on machine learning. In the proposed method, an object with a complex-amplitude field is illuminated with incoherent light and is captured by an image sensor with or without a coded aperture. The complex-amplitude field of the object is reconstructed from a single captured image using a state-of-the-art deep convolutional neural network, which is trained with a large number of input and output pairs. In experimental demonstrations, the proposed method was verified with a handwritten character database, and the effect of a coded aperture printed on an overhead projector film in the reconstruction was examined. Our method has advantages over conventional wavefront sensing techniques using incoherent light, namely simplification of the optical hardware and improved measurement speed. This study shows the importance and practical impact of machine learning techniques in various fields of optical sensing.