Sepsis is a serious
bloodstream infection where the immunity of
the host body is compromised, leading to organ failure and death of
the patient. In early sepsis, the concentration of bacteria is very
low and the time of diagnosis is very critical since mortality increases
exponentially with every hour after infection. Common culture-based
methods fail in fast bacteria determination, while recent rapid diagnostic
methods are expensive and prone to false positives. In this work,
we present a sepsis kit for fast detection of bacteria in whole blood,
here achieved by combining selective cell lysis and a sensitive colorimetric
approach detecting as low as 10
3
CFU/mL bacteria in less
than 5 h. Homemade selective cell lysis buffer (combination of saponin
and sodium cholate) allows fast processing of whole blood in 5 min
while maintaining bacteria alive (100% viability). After filtration,
retained bacteria on filter paper are incubated under constant illumination
with the electrochromic precursors, i.e., ferricyanide and ferric
ammonium citrate. Viable bacteria metabolically reduce iron(III) complexes,
initiating a photocatalytic cascade toward Prussian blue formation.
As a proof of concept, we combine this method with antibiotic susceptibility
testing to determine the minimum inhibitory concentration (MIC) using
two antibiotics (ampicillin and gentamicin). Although this kit is
used to demonstrate its applicability to sepsis, this approach is
expected to impact other key sectors such as hygiene evaluation, microbial
contaminated food/beverage, or UTI, among others.