BackgroundTodays, drug nanocarrier development and improving its biophysical properties is one of the updated and intended of nano-biopharmaceutical science researches. Single-walled carbon nanotubes (SWCNT), as a typical carbon structure based nanocarrier, but have some obstacles in drug delivery mechanisms. In that current study, the penetration, loading, and release of Doxorubicin and Paclitaxel, as two anticancer agents, were investigated using a novel modified and functionalized SWCNT.ResultsThis study was carried out using molecular dynamics simulation based on a dual-responsive smart biomaterial. At the in-silico study, Interaction energies between drugs and carriers, numbers of hydrogen bonds, diffusion coefficient, and gyration radius were investigated. The kinetic analysis of drug adsorption and release revealed that, fascinatingly, drug loading and drug release are selective at physiological and cancerous acidic pH, respectively. Interaction of Dimethyl acryl amid-trimethyl chitosan, as a biodegradable and biocompatible hydrogel, with SWCNT indicated that degradation reaction in acidic condition destructs the polymer, which leads to a smart release in cancerous tissue at specific pH. Moreover, it resolves hydrophilicity, optimum nanoparticle size, cell membrane penetration, and cell toxicity concerns.ConclusionsThe simulation results indicated a marvelous role of dimethyl acryl amide-trimethyl chitosan in the adsorption and release of anticancer drugs in normal and neoplastic tissue. The interaction of trimethyl chitosan also improves biocompatibility as well as biodegradability of the carrier. Overall, that novel drug carrier can be a virtuous nanoparticle for loading, transporting, and releasing the anticancer drugs.