Fornasiero and colleagues describe an alternative strategy for producing hydrogen peroxide through a more sustainable method than the current synthetic approaches. The strategy relies on the use of electrocatalysis, made possible by the use of a catalyst with high efficiency and selectivity toward H 2 O 2 formation. The prepared material is particularly appealing because it does not contain any metal, implying a greener and cheaper synthetic scheme.
This work explains why and how heterochiral and homochiral tripeptides differ in their assembly in water. A characteristic spectroscopic signature is assigned to molecular conformation. We monitor the process as a continuum from the molecular scale to the macroscopic biomaterials so that the final properties are linked to chemical structure of the building blocks. This work lays the foundation for the design of supramolecular hydrogel biomaterials based on short sequences of hydrophobic D-and L-amino acids.
Solution-processed semiconducting transition metal dichalcogenides (TMDs) are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity.Here, we report a new molecular strategy to boost the electrical performance of TMD-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solutionprocessed transition metal disulfides (MS2) and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order-ofmagnitude in field-effect mobility (µFE), current ratios (ION / IOFF), and switching times (τS) of liquid-gated transistors, reaching 10 -2 cm 2 V -1 s -1 , 10 4 , and 18 ms, respectively. Our functionalization strategy is an universal route to simultaneously enhance the electronic connectivity in MS2 networks and tailor on demand their physicochemical properties according to the envisioned applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.