Explicit Birational Geometry of 3-Folds 2000
DOI: 10.1017/cbo9780511758942.007
|View full text |Cite
|
Sign up to set email alerts
|

Singularities of linear systems and 3-fold birational geometry

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
274
0
52

Year Published

2005
2005
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 165 publications
(328 citation statements)
references
References 0 publications
2
274
0
52
Order By: Relevance
“…Let V ⊂ P(1, a 4 , a 5 ) be the open subset given by x 1 = 0. Then V ∼ = C 2 and the affine curve V ∩ C is either a cubic curve when ⌊d/a 4 ⌋ 3 or a double cover of C ramified at most four points when ⌊d/a 4 ⌋ 4 and 2a 5 ≤ d < 2a 5 + a 4 .…”
Section: Elliptic Fibrationsmentioning
confidence: 99%
See 3 more Smart Citations
“…Let V ⊂ P(1, a 4 , a 5 ) be the open subset given by x 1 = 0. Then V ∼ = C 2 and the affine curve V ∩ C is either a cubic curve when ⌊d/a 4 ⌋ 3 or a double cover of C ramified at most four points when ⌊d/a 4 ⌋ 4 and 2a 5 ≤ d < 2a 5 + a 4 .…”
Section: Elliptic Fibrationsmentioning
confidence: 99%
“…Let D be a general surface of in the linear system | − 5K X | and S be the unique surface of the linear system | − K X |. Then D is cut on X by the equation λx 5 1 + δx 1 x 2 + µx 3 = 0, where (λ : δ : µ) ∈ P 2 , and S is cut by the equation x 1 = 0. Moreover, the base locus of the linear system | − 5K X | consists of the single irreducible curve C that is cut on the hypersurface X by the equations x 1 = x 3 = 0.…”
Section: Elliptic Fibrationsmentioning
confidence: 99%
See 2 more Smart Citations
“…Понятие бирациональной (сверх)жесткости является об-щепринятым, однако разные авторы используют разные определения (см. [2], [8]- [10]). По-видимому, наиболее точным является такое определение: про-ективное рационально связное многообразие X бирационально жесткое, если существует модель X , бирационально эквивалентная X , удовлетворяющая условию п.…”
Section: бирациональная жесткостьunclassified