Cable-driven parallel robots (CDPR) have been well used in the rehabilitation field. However, the cables can provide the tension in a single direction, there is a pseudo-drag phenomenon of the cables in the CDPR, which will have a great impact on the safety of patients. Therefore, the novelty of this work is that a bionic muscle cable is used to replace the ordinary cable in the CDPR, which can solve the pseudo-drag phenomenon of the cables in the CDPR and improve the safety performance of the rehabilitation robot. The cable-driven lower limb rehabilitation robot with bionic muscle cables is called as the bionic muscle cable-driven lower limb rehabilitation robot (BMCDLR). The motion planning of the rigid branch chain of the BMCDLR is studied, and the dynamics and system stiffness of the BMCDLR are analyzed based on the man–machine model in this paper. The influence of the parameters of the elastic elements in the bionic muscle cables on the mechanical characteristics of the BMCDLR system was analyzed by using simulation experiments. The research results can provide a reference basis for research on the safety evaluation and control methods of the BMCDLR system.