This paper is aimed at studying underwater object detection and positioning. Objects are detected and positioned through an underwater scene segmentation-based weak object detection algorithm and underwater positioning technology based on the three-dimensional (3D) omnidirectional magnetic induction smart sensor. The proposed weak object detection involves a predesigned U-shaped network- (U-Net-) architectured image segmentation network, which has been improved before application. The key factor of underwater positioning technology based on 3D omnidirectional magnetic induction is the magnetic induction intensity. The results show that the image-enhanced object detection method improves the accuracy of Yellow Croaker, Goldfish, and Mandarin Fish by 3.2%, 1.5%, and 1.6%, respectively. In terms of sensor positioning technology, under the positioning Signal-to-Noise Ratio (SNR) of 15 dB and 20 dB, the curve trends of actual distance and positioning distance are consistent, while
SNR
=
10
dB
, the two curves deviate greatly. The research conclusions read as follows: an underwater scene segmentation-based weak object detection method is proposed for invalid underwater object samples from poor labeling, which can effectively segment the background from underwater objects, remove the negative impact of invalid samples, and improve the precision of weak object detection. The positioning model based on a 3D coil magnetic induction sensor can obtain more accurate positioning coordinates. The effectiveness of 3D omnidirectional magnetic induction coil underwater positioning technology is verified by simulation experiments.