Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. We consider a singularly perturbed reaction-diffusion equation in two dimensions (x, y) with concentrated source on a segment parallel to axis Oy. By means of an appropriate (including corner layer functions) decomposition, we describe the asymptotic behavior of the solution. Finite difference schemes for this problem of second and fourth order of local approximation on Shishkin mesh are constructed. We prove that the first scheme is almost second order uniformly convergent in the maximal norm. Numerical experiments illustrate the theoretical order of convergence of the first scheme and almost fourth order of convergence of the second scheme.2000 Mathematics Subject Classification: 65M06, 65M12.
The objective of this paper is to construct and analyze a fitted operator finite difference method (FOFDM) for the family of time-dependent singularly perturbed parabolic convection-diffusion problems. The solution to the problems we consider exhibits an interior layer due to the presence of a turning point. We first establish sharp bounds on the solution and its derivatives. Then, we discretize the time variable using the classical Euler method. This results in a system of singularly perturbed interior layer two-point boundary value problems. We propose a FOFDM to solve the system above. Through a rigorous error analysis, we show that the scheme is uniformly convergent of order one with respect to both time and space variables. Moreover, we apply Richardson extrapolation to enhance the accuracy and the order of convergence of the proposed scheme. Numerical investigations are carried out to demonstrate the efficacy and robustness of the scheme. KEYWORDS error bounds, finite difference methods, interior layer, singularly perturbed problems, uniform convergence 1 Numer Methods Partial Differential Eq. 2019;35:2407-2422. wileyonlinelibrary.com/journal/num
Abstract. We consider stationary linear problems on non-connected layers with distinct material properties. Well posedness and the maximum principle (MP) for the differential problems are proved. A version of the finite element method (FEM) is used for discretization of the continuous problems. Also, the MP and convergence for the discrete solutions are established. An efficient algorithm for solution of the FEM algebraic equations is proposed. Numerical experiments for linear and nonlinear problems are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.