The Zarqa-Ma'in basalt (MB) occurs near a plateau basalt (wadi fills) covering about 15 km 2 of Makawir, Ataruz, and Hammat um Hasana cone areas in central Jordan. The tectonic evolution occurred through intraplate volcanism and erupted through fissure systems along the Dead Sea, transforming the fault during Miocene to Pleistocene period. Three stages of eruption of MB have been recorded during Pleistocene from 6 to 0.6 Ma. The petrographic analyses data show that the MB rocks are composed of plagioclase, olivine, pyroxene, and magnetite, including secondary minerals calcite, iddingsite, serpentine, and zeolite. Furthermore, the MB rocks have narrow ranges of major and trace element concentrations, and are of under saturated silica type and belong to sodic alkaline magma series. The geochemical characteristics of MB indicate that MB was derived from a slightly fractionated magma as reflected by its high MgO (6.3 -11.7 ppm) concentration with Mg number from 0.41 to 0.61, low silica content (40.83 -47.55 wt%), and high Cr and Ni concentrations (115 -475 and 105 -553 ppm, respectively). This basalt exhibited low degree of partial melting (10%) for garnet peridotite mantle source. The model mineral fractionation showed that the MB could be fractionated to clinopyroxene, orthopyroxene, olivine, and plagioclase.