Acrylic acid is a product with several applications in the chemical industry, the main one is the production of sodium polyacrylate, a superabsorbent material used in the toiletries manufacture. Currently acrylic acid is obtained from propene oxidation using heterogeneous Mo/Bi and Mo/V oxide-based catalysts. In this process, propene is first oxidized to acrolein, which is then oxidized to acrylic acid. Although this is already a consolidated process, propylene comes from petrochemical sources and thus there is a concern to search for alternative routes to the use of this raw material and one of the possibilities is to synthesize acrolein from glycerol dehydration using specific catalysts. For the project, heterogeneous catalysts were prepared to obtain the acrylic acid, first evaluated in the oxidation of acrolein and later in the glycerol oxideshydration. Three types of samples were synthesized with different compositions B1- Mo12V4,8W2,4Cu2,2Si8,4; B2-Mo12V2W0,5Si6,2 and B3-Mo12V2,7Si6,2) by four preparation methods, namely by evaporation, evaporation followed by hydrothermal treatment, hydrothermal treatment (TH) and using a block copolymer. For the last two methods a more detailed study was performed to determine the best synthesis conditions (Phase I), and it was found that the total dissolution of the reagents in the mixture before TH resulted in samples with higher crystallinity and less active phase loss in the liquid and the use of a cold dissolved block copolymer contributed to an increase in pore volume. In the second stage, the materials synthesized by the four proposed methods were characterized and evaluated in reactor in acrylic acid production. The samples B1 showed different crystalline phase formation depending on the preparation method used, and in samples B2 and B3 the main phase was identified as a-MoO3, regardless of the method used. The samples synthesized by evaporation followed by TH showed the highest selectivity for acrylic acid formation from acrolein for the same catalyst composition, which may be related to the higher vanadium oxide content present in samples identified by FRX and the formation of the crystalline phase V0.35Mo4,65O14. The best performance was observed in sample B1-EV+TH with selectivity of 50.59% and 3.61% for acrylic acid in the processes from acrolein and glycerol, respectively