1. Bursts of triggered activity can be induced in atrial fibres of the canine coronary sinus exposed to catecholamines. During a triggered burst there is an initial acceleration of rate accompanied by depolarization of the maximum diastolic potential (m.d.p.) followed by slowing of the rate and termination accompanied by hyperpolarization. 2. We have used extracellular K+-sensitive micro-electrodes (potassium ISE) to monitor extracellular K+ concentration ([K+]o) during and following triggered activity, while simultaneously measuring membrane potential with conventional intracellular micro-electrodes. 3. We found that the initial increase in rate during triggered activity is accompanied by increased [K+]o and depolarization. Later rate slowing and m.d.p. hyperpolarization is accompanied by decline of extracellular K+ accumulation. Following termination of triggered activity, extracellular K+ depletion occurred. 4. The decline of [K+]o and slowing of rate are known responses to enhanced Na+-K+ pump activation, as is the post-triggering depletion of extracellular K+. 5. Strophanthidin, which blocks the Na+-K+ pump, also blocks the [K+]o decline, the slowing of rate seen towards the end of the triggered episode, and the post-triggering depletion of extracellular K+. 6. Separate experiments studying the effects of elevated bath K+ and depolarizing current on triggering rate and delayed after-depolarization amplitude support our hypothesis that the rate profile of the triggered episode is to a large extent controlled by variations in m.d.p. subsequent to extracellular K+ accumulation and Na+-K+ pump activation.