Miscanthus, a C4 perennial rhizomatous grass from Asia is a leading candidate for the supply of sustainable biomass needed to grow the bioeconomy. European Miscanthus breeding programmes have recently produced a new range of seeded hybrids with the objective of increasing scalability to large acreages limited by current clonal propagation. For the EU-GRACE project new replicated field trials were established in seven locations across Europe in 2018 with eight intraspecific M. sinensis hybrids (sin×sin) and six M. sacchariflorus × M. sinensis (sac×sin) from Dutch and UK breeding programmes respectively with clonal Miscanthus × giganteus. The planting density of the sin×sin was double that of sac×sin (30,000 & 15,000 plants ha -1 ), creating commercially relevant upscaling comparisons between systems. Over the first three years, the establishment depended on location and hybrid. The mature sin×sin hybrids formed tight tufts of shoots up to 2.5 m tall which flower and senesce earlier than the taller sac×sin hybrids. Following the third growing season, the highest yields were recorded in Northern Italy at a low altitude (average 13.7 (max 21) Mg DM ha -1 ) and the lowest yielding was on the industrially damaged marginal land site in Northern France (average 7.0 (max 10) Mg DM ha -1 ). Moisture contents at spring harvest were lowest in Croatia (21.7%) and highest in Wales, UK (41.6%). Overall, lower moisture contents at harvest, which are highly desirable for transport, storage and for most end-use applications, were found in sin×sin hybrids than sac×sin (30 and 40% respectively). Yield depended on climate interactions with the hybrid and their associated planting systems. The sin×sin hybrids appeared better adapted to northern Europe and sac×sin hybrids to southern Europe. Longer-term yield observations over crop lifespans will be needed to explore the biological (yield persistence) and economic costs and benefits of the different hybrid systems.