This study investigated the associations of non-aerobic fitness (NAF) and motor competence (MC) with attention in 4–6 year-old preschoolers. The allocation of attentional resources and speed of stimulus categorization were examined using the amplitude and latency of P3 of event-related potentials respectively, while cortical activation related to general attention and task-specific discriminative processes were examined using event-related desynchronization (ERD) at lower (8–10 Hz) and upper (10–12 Hz) alpha frequencies, respectively. Seventy-six preschoolers completed NAF (muscular power, muscular endurance, flexibility, balance) and MC (coordination and dexterity, ball skills, agility and balance) test batteries. Electroencephalogram was recorded while participants performed an auditory oddball task. After controlling for age and MC, muscular endurance was positively related to P3 amplitude. MC and its coordination and dexterity sub-component were positively related to task performance, with higher levels of coordination and dexterity showing an additional association with greater upper alpha ERD between 700 and 1000 ms following stimulus onset after controlling for age and NAF. These findings suggest relationships of NAF and MC with early childhood neurocognitive function. Specifically, muscular endurance is related to the neuroinhibition in facilitating effective allocation of attentional resources to stimulus evaluation while coordination and dexterity are related to cortical activation underlying strategic attentional preparation for subsequent stimulus evaluation.