The perpetual use of antibiotics against pathogens inadvertently altered their genes that have translated into an unprecedented resistance in microorganisms in the twentyfirst century. Many researchers have formulated bactericidal and bacteriostatic inorganic nanoparticle-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than organic-based antibiotics. Based on this line, herein, we present observations on microbial abatement using gold-based zinc oxide nanostructures (Au@ZnO) which are synthesized using hydrothermal route. Inhibition of microbial growth and biofilm using Au@ZnO is a unique feature of our study. Furthermore, this study evinces antimicrobial and antibiofilm mechanisms of photo-eradiated Au@ZnO by disruption of cellular functions and biofilms via reactive oxygen species (ROS)-dependent generation of superoxide anion radical. The present study is significant as it introduces novel functionalities to Au@ZnO in the biomedical field which can be extended to other species of microbial pathogens.