A shape-controlled strategy was developed to synthesize porous Co3O4 nanoparticles, and the delicate morphology including nanourchins, nanowires, nanoflowers, and nanoplates could be well adjusted by adopting different anion precursors. The Co3O4 nanomaterials were further applied as the electrocatalysts for glucose detection, and the effect of nanostructure on the electrochemical performance was investigated. Results show that Co3O4 nanourchins illustrate the highest glucose sensitivity of 565 mA mM-1 cm-2 and a good linear detection ranging from 20 μM to 0.25 mM. The improved performance of obtained products was originally from the large surface area and high pore volume, which leads to a significantly increased accessibility of reactant and decreased Faradic electron transfer resistance, making it a promising candidate for glucose sensing.