Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it became clear that cell size is a major regulator of cell function. However, we are only beginning to understand how optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells, and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis and cell cycle progression. We detail the cell size dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size, and how for a long time, this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.