Ascorbic acid (AA) has been widely used to improve human health since it was first found, such as resisting scurvy, enhancing immunity, and preventing arteriosclerosis. Moreover, it plays a very important role in the anti-oxidation process in the human body. Therefore, it is of great significance to develop sensitive and accurate detection methods. In this work, silver-coated gold nanorods (Au@Ag NRs) acted as the optical probe, which could be etched with hydroxyl radicals (·OH) from the Fenton reaction between H2O2 and Fe2+, leading to the blue shift of longitudinal localized surface plasmon resonance absorption. However, as a free radical scavenger, AA was able to inhibit the Fenton reaction, resulting in a red shift of plasmon resonance absorption. Based on the change in longitudinal plasma resonance absorption of silver-coated gold nanorods, a linear relationship between the maximum longitudinal absorption wavelength and the concentration of AA was established in the range of 2.5–17.5 μM with a limit of detection (LOD) of 0.48 μM and a limit of quantitation (LOQ) of 1.61 μM, which was feasible to detect AA in tablets.