Molecular targeted nanodroplets, promising to extravasate beyond the vascular space, have great potential to improve tumor detection and characterization. High frame rate ultrasound, on the other hand, is an emerging tool for imaging at a frame rate 1-2 orders of magnitude higher than common existing ultrasound operating systems. In this study, we used high frame rate ultrasound combined with optics to study the acoustic response and size distribution of Folate Receptor (FR) -targeted versus Non-Targeted (NT)-nanodroplets in vitro with MDA-MB-231 breast cancer cells immediately after ultrasound activation. A flow velocity mapping technique, Stokes' theory, and optical microscopy were used to estimate the size of both floating and attached vaporized nanodroplets immediately after activation. It was found that the size of floating vaporized nanodroplets was on average more than 7 times larger than the size of vaporized nanodroplets attached to the cells. The results also showed that the acoustic signal of vaporized FR-nanodroplets was persistent after activation, with 70% of the acoustic signals still present 1 second after activation, compared to the vaporized NT-nanodroplets where only 40% of the acoustic signal remains. The optical microscopic images showed on average 6 times more vaporized FR-nanodroplets generated with a wider range of diameters (from 4 to 68 µm) that still attach to the cells compared to vaporized NTnanodroplets (from 1 to 7 µm) with non-specific binding after activation. It was also found that the mean size of attached vaporized FR-nanodroplets was on average about 3-fold larger than that of attached vaporized NT-nanodroplets. The study offers an improved understanding of the vaporization of the targeted nanodroplets in terms of their sizes and acoustic response in comparison with non-targeted ones, taking advantage of high-frame-rate contrast-enhanced ultrasound and optical microscopy. Such understanding would help design optimized methodology for imaging and therapeutic applications.