We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/ SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe-nanopatterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5-90 nm), the SiO2 thickness (3-4 nm), and the SiGeshell thickness (2-15 nm) have been demonstrated, enabling a practically achievable core building block for Ge-based metal-oxide-semiconductor (MOS) devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive X-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5 × 10 11 cm −2 eV −1 and fixed charge densities of 1-5 × 10 11 cm −2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1−xGex shell (x > 0.5) in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge) MOS nanoelectronic and nanophotonic applications.